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A recently introduced cluster acceleration algorithm for spin moflel#lachtaet al, Phys. Rev. Lett75,
2792(1995] based on invasion percolation is generalized to temperatures away from the critical point using
concepts of random bond percolation. The generalized algorithm is equivalent to an “optimized” version of
the Swendsen-Wang cluster algoritfif. H. Swendsen and J. S. Wang, Phys. Rev. [58t86 (1987)], and
we demonstrate its success and speed at all temperatures fbr=thdsing model. We argue that the previ-
ously discussed connection to self-organized criticality may be viewed as one limit of the fixed-cluster algo-
rithm. [S1063-651X96)50305-3

PACS numbsgps): 05.50+q, 75.40.Mg, 75.10.Hk

Recently, a remarkably simple cluster algorithm for gen-formed [5]. We refer to the generalized algorithm as the
erating equilibrium spin configurations at critical points wasfixed-clustern(FC) algorithm. For the purposes of illustration,
introduced by Machta and co-workdis|. This development we consider here the FC algorithm as applied to the two-
in acceleration algorithms for unfrustrated spin systems iglimensional Ising model in zero magnetic field.
exciting because the method can be used to sample the criti- Because the first paper on this new algorithm has just
cal region without knowing the critical temperature, and also'ecently appearefll], we begin by confirming that the pre-
because the method is significantly faster than the celebrate&ggription of Machtaet al. indeed generates an equilibrated
and closely related Swendsen-WaigyV) [2] and Wolff[3]
cluster algorithms. The recipe is simple: Start wathy con-
figuration of spins, and throw “bonds” with probability one
between nearest-neighbor pairs of paralkstisfied spins
anywhere on the lattice until a spanning cluster is formed. 108 1 . e IC
Then flip each cluster of bonded spins with probability 1/2, e * SW(T=T))
and repeat. After very few iterations, a spin configuration \
characteristic in every respect to one in equilibrium at the *
critical point is produced. This method—which may also be h
performed using invasion percolation to identify the e
clusters—was thus said to exhibit self-organized criticality. 107 ¢ e,

In this paper, we generalize this “invaded clustdiC)

[1] algorithm to generate equilibrium spin configurations at ) ‘
anytemperature, not just the critical temperatlite This is 1 10 100 1000
achieved using a variation of random bond percolation, in- s

stead of invasion percolatidd], to identify the clusters, and FIG. 1. Cluster size distribution calculated on lattices equili-
flipping the clusters with probability 1/2 after a cluster of brated with the invaded clust€tC) and Swendson-Wan¢SWw)
length 7/ is formed, rather than when a spanning cluster isalgorithms. The slope of the line is=2.04.
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FIG. 2. Average energy per spin for IC and SW starting from all  FIG. 4. Cluster size distribution(s) plotted againss for FC at
spins up for the first 20 iterations. /=50, for simple Glauber aT=2.5331 and for FC at’= 100,

Glauber atT=2.3726. Both sets of data are generated from 1000

lattice atT., and is faster than SW. Figure 1 shows theme'oenoIent 500500 square lattices.

number of clusters(s) at T. containings sites plotted . ] ]
double logarithmically vss, and averaged over 1000 inde- fithms atTc, and find as Machtat al. did that the correla-
pendent 508 500 square lattices simulated with the IC al- tions decay to zero within two iterations for the IC algorithm,
gorithm. To calculate the equilibrium cluster size distribu-While the SW algorithm requires at least 20 iterations for the
tion, clusters are identified as nearest-neighbor pairs dfOlTe'atiOﬂS to decay to zero on the same size lattice. Thus
parallel spins connectef,7] by bonds with probability ~We confirm the success of the algorithm presented by Machta
pp=1—e 2T where J is the coupling strength. The etal. in generating equilibrium spin configurations at the
slope of the line gives the cluster size distribution exponene€titical point in thed=2 Ising model.
r=2.04, in very good agreement with the accepted value We generalize the IC algorithm to generate equilibrium
7=2.07 when finite size effects are considered. Figure 1 alséPin configurations aff #T; by performing the following
shows the cluster size distribution averaged over 1000 indg?rocedure: Starting with all spins ufalthough any initial
pendent 508 500 lattices simulated with the SW algorithm configuration will work, throw bonds between nearest-
at T,; we see that the distributions obtained using the twgheighbor parallel(satisfied spins anywhere on the lattice
algorithms are indistinguishable. Figure 2 shows theWith probability one. When any cluster of bonded spins
increase in energf as the system equilibrates from an reaches a prechosen lengtiiwhere length is defined as the
initial configuration of all spins upE= —2.0) to thecritical ~ Maximum linear extensionflip each cluster with probability
point (E=—1.41), calculated for both the IC and Sw 1/2, and repeat. Figure 3 shows the enefgand the ratio
algorithms on 10 independent 4008000 lattices; we see f Of inserted bonds/satisfied pairs after each iteration, aver-
that the SW algorithm requires over 10 times more iterationgiged over 100 500500 lattices simulated with the FC algo-
than the IC algorithm to reach the equilibrium energy. Wefithm with ~/=50. After three iterationsz andf reach their
also calculate the equilibrium energy and magnetizatiorquilibrium valuesE=—1.078 andf =0.546. o
autocorrelation _functions([E(t) — E][E(0)— E])/ var(E) To confirm that the configuration is indeed in equilibrium,
and([|M(t)| = |M[I[|M(0)|= M]|])/ var(M) for both algo- and to determine the temperature of the latfigl we calcu-

late T from the energy using Onsager's formuyl@] for
E(T), and then independently equilibrate a new lattice using
the Glauber spin-flip algorithrifiL0] at that temperature. The
cluster size distributiom(s) for both the FC-equilibrated
lattices with /=50 and 100 and the Glauber-equilibrated
lattices at the corresponding temperatufies 2.5331 and
2.3726 are shown in Fig. 4; we see that at both temperatures

z 1 the cluster distributions generated by the two different algo-
Y op || T 1(=50) ] rithms are indistinguishable.
e ' Py(T=2.53) 1 Figure 5 shows the mean cluster s{# vs (T—T,) plot-

ted double-logarithmically for the 500500 lattices simu-

0 5 10 15 20 . X :
lated with the FC algorithm for various. Here the mean

=18 1| /o—e FC (1=50) t(MCS) ; . : -
— E(T=2.53) from Onsager cluster size, which scales in the same way as the susceptibil-
oot o—OSW(T=253) ‘ ity for T—T,, is defined as(s)=[=5?n(s)]/[Z.sN(S)].
' 5 10 15 20 We find the exponeny, which describes the divergence of
t(MCS) the mean cluster size as the critical temperature is ap-

FIG. 3. Average energy per spin starting from all spins up forProached, to bey=1.73, in excellent agreement with the

the first 20 iterations for FC at =50 and SW aff=2.53. Inset: ~ exact theoretical value of=1.75. _
Fraction of satisfied bonds starting from all spins up for FC at To elucidate the reason why the FC algorithm works, we

/' =50. list in Table | the equilibrium values df andE obtained for
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FIG. 5. Mean cluster sizés) plotted againstT—T,| for FC.
The slope of the line igy=1.73.

FIG. 6. Equilibrium energy and magnetization autocorrelation
functions for FC at”’=50 and SW afl =2.5331.

) ) _any /), the FC algorithm is equivalent to an “optimized”
each value of’, the corresponding temperature of the lattice gy algorithm—that is, SW with the maximum cluster length

calculated from the Onsagg/rkielatlon_, and the correspondingyeq to be representative of the desired cluster distribution.
bond probabilityp,=1—e"“"*" used in the SW algorithm.  consequently, since the SW algorithm generates configura-
Recall that in the SW algorithm, bonds are thrown with prob-tjons in the grand canonical ensemble, the FC algorithm gen-
ability p, between nearest neighbor pairs of parafletis-  grates only a subset of this ensemble.

fied) spins, and clusters of spins connected by bonds are Thjs reasoning also explains the relative speed of the
flipped with probability 1/2. We see from Table | that for FC algorithm at all temperatures in generating successive
each choice of fixed cluster lengtfe=py. This is why the  decorrelated equilibrium configurations, as compared to SW
FC algorithm works: once the system is in equilibrium, flip- (cf. Fig. 6). Note that the relative efficiency of the FC algo-
ping the clusters after a cluster of lengthis grown is  rithm will be greatest close to the critical point, for large
equivalent to flipping the clusters after a fractibiof bonds  system sizes, and for increasing dimension, since there the
has been thrown, and this is equivalent to the SW prescripeffect of the guaranteed existence of the largest cluster will
tion of flipping the clusters after throwing bonds betweenpe most significant. Figure 7 shows the probabiRty of an
every satisfied pair of spins with probabilips=f. Thatis, infinite cluster vs the bond fractioh. As the lattice size
each iteration of the FC algorithm at fixed cluster lengtls approaches infinity,P,. approaches a step function at
essentially equivalent to one iteration of the SW algorithmf:pc_ In the SW algorithm aff;, bonds are thrown with
with py(T)=1(~) [11]. _ probability p.. Due to fluctuations, sometimes a more-than-
~ However, the FC algorithm guarantees that at each iteraspanning cluster will be present, sometimes no spanning
tion the maximum cluster length presentcisaracteristic of  clyster will be present, and sometimes an incipient infinite
the cluster distribution at the desired state poiffor ex-  ¢lyster will be present. With the FC algorithm at=L,
ample, for/” equal to the system size the FC algorithm  powever—and consequently with the IC algorithm—the in-
guarantees by definition that a spanning cluster is alwaygipient infinite cluster is always present.

present before the clusters are flipped. Since a spanning The FC algorithm is also faster than SWrachingequi-
cluster is typical of the critical point, and since |iprium at any temperature, starting from any initial starting
f(#=L)=py(Tc), the algorithm is equivalent to the SW al- configuration. The reason is that before the system is in equi-
gorithmwith configurations not containing an incipient infi- |iprjum, f is not equal to the SW bond probability at the
nite cluster eliminatedThus, at anyT (or equivalently for  desired temperature, but rather it is equaptoat adifferent

TABLE I. Equilibrium values off andE for different values of

/, for lattice sizeL =500. infinite
1.0 + finite

/ (/) E(/) T Po(T) 08 |
50 0.547 -1.0785 2.5331 0.546
60 0.555 -1.1267 2.4767 0.554 ol 06
70 0.560 -1.1651 2.4366 0.560
80 0.565 -1.1935 2.4094 0.564 041
90 0.568 -1.2173 2.3883 0.567 02 |
100 0.570 -1.2362 2.3726 0.570
125 0.575 -1.2745 2.3433 0.575 0.0
150 0.577 -1.3010 2.3252 0.577 Pc
200 0.580 -1.3339 2.3050 0.580 f
500 0.586 -1.4054 2.2619 0.586 FIG. 7. Schematic plot of the probabilify,. of finding a span-

ning cluster vs bond fractioh for a finite and an infinite lattice.
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TABLE Il. f, E, and M for the first 10 iterations of one TABLE Ill. f, E, andM for the first 10 iterations of one 500

4000x4000 lattice with/'=L (corresponding toT=T,), starting X500 lattice with /=50 (corresponding tolr =2.5331), starting

from all spins up. Also listed are the effective temperature afterfrom all spins up. Also listed are the effective temperature after

each iteration, and the ratio d%.¢; to the target temperature. each iteration, and the ratio % to the target temperature.

t f(t) E(t) M(t) Terr  Tere/Te t f(t) E(t) M(t) Tett Tert/T

0 0.0000 -2.0000 1.0000 0.00 0.00 0 0.0000 -2.0000 1.0000 0.000 0.000
1 0.4995 -1.5148 -0.0717 2.89 1.27 1 0.4191 -1.1496 -0.1139 3.682 1.454
2 0.5693 -1.4432 0.1027 2.37 1.04 2 0.5187 -1.0545 0.0114 2.735 1.079
3 0.5825 -1.4321 -0.0278 2.29 1.01 3 0.5470 -1.0673 -0.0023 2.526 0.997
4 0.5752 -1.3986 -0.1261 2.34 1.03 4 0.5465 -1.0709 -0.0010 2.529 0.998
5 0.5849 -1.4047 -0.1144 2.27 1.00 5 0.5497 -1.0806 0.0027 2.507 0.990
6 0.5932 -1.4235 0.0363 2.22 0.98 6 0.5473 -1.0808 0.0000 2.524 0.996
7 0.5782 -1.4031 -0.0108 2.32 1.02 7 0.5443 -1.0735 -0.0014 2.545 1.005
8 0.5888 -1.4168 -0.0604 2.25 0.99 8 0.5508 -1.0849 -0.0009 2.499 0.986
9 0.5835 -1.4178 -0.0502 2.28 1.00 9 0.5428 -1.0723 0.0003 2.555 1.008
10 0.5806 -1.4043 -0.0371 2.30 1.01 10 0.5435 -1.0664 0.0002 2.550 1.007

temperature. Table Il showisafter each iteration of the FC The EC algorith it f random bond
algorithm for /7 equal to the system size, starting from an € algorithm uses a variation of random bond perco-

initial configuration of all spins up. At the first iteration, :ltslogr:ziAdegrlljfgtglruSé?]resr:tfe?jounsdiﬁd :ﬁ'hn;‘ cFoc;:cftlam;f (l)?t::r?dsc’)m
f(t=1)=0.499 for this run. Had we used the SW algorithm, P g cl ge . g el i pis ofr
a fraction f(t=1)=py(T,)=0.586 of bonds would have bond percolation or invasion percolation will be statistically
been thrown at the fitr’st ?teration. Thus we can consider th%dﬁntica:{ t'()li\/;e:j/etr, ra;nd:)mmboxr?rcri] prtr-:‘]rc?laiiorn iisz molre n?rt]u—n
first iteration of the FC algorithm as an iteration using SW ally generalized to create maximum ciuster sizes {ess tha
with p,=0.499, or equivalently with an effective tempera- spanning, and thus to bolnd fractions away from and
ture To..=2 89 'as calculated from,=1— e 2T which consequently the FC algorithm can be straightforwardly gen-
is re;;ferth'anT At the second i?eration of the, FC algo- eralized to temperatures away frafg. Thus while the IC
ritr?m f(t=2):6.569 which corresponds t6...= 2 37g algorithm was originally based on invasion percolation and
Thus’ each succéssi\;e iteration setsp the teme”erattljre.to jroduced to sample the critical region, we have shown that
closer to but sliahtly higher thait. . thereb hrt)eatin the 1€ algorithm can be generalized to produce equilibrium spin
ghtly figher thanc, y 9t configurations aany temperature—and thus sample regions
system faster. At each iteratioh,increases, and at the sixth of phase space away from the critical region—simply by
iteration for this run.,f exceedsy,, thus cooling .the ;ystem choosing the maximum cluster length to be a finite value
to a temperature slightly belo,. At the next iteration, a /. Thus, tuning” allows one to tune the final temperature of
fraction f<py(T.) is thrown, “warming” the system back !

toT.. This “neqative feedback” mechanism described al the lattice. From this point of view, the connection between
O lc- S negative feedback™ mechanism described alsoy, . |~ algorithm and self-organized criticality can be viewed
by Machtaet al—combined with fixing the maximum cluster

as simply the/—« limit of the FC algorithm. From the

Egg}gutigon—?se rege%rrfssig?etig\:ethe()fs ;23 o??r?érel:dc ;*%Stlgpoint of view of invasion percolation, however, the associa-
P P tion with self-organized criticality is a natural one.

algorithms. The same argument applies to finitei.e., T
#T., simulations(cf. Table Ill). Thus we see that the FC S.C.G. acknowledges stimulating conversations with J.
algorithm approaches equilibrium in a manner similar to thatMachta and R.H. Swendsen. We thank J. Machta for sending
achieved through an optimized simulated annealing procesgs a copy of unpublished work, and A. Coniglio, S.A.
whereas SW approaches equilibrium in a manner similar td.anger, P.H. Poole, and D. Stauffer for helpful comments on
that achieved via quenching. the manuscript. T.B.L. is supported by SFB 341.
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