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A recently introduced cluster acceleration algorithm for spin models@J. Machtaet al., Phys. Rev. Lett.75,
2792 ~1995!# based on invasion percolation is generalized to temperatures away from the critical point using
concepts of random bond percolation. The generalized algorithm is equivalent to an ‘‘optimized’’ version of
the Swendsen-Wang cluster algorithm@R. H. Swendsen and J. S. Wang, Phys. Rev. Lett.58, 86 ~1987!#, and
we demonstrate its success and speed at all temperatures for thed52 Ising model. We argue that the previ-
ously discussed connection to self-organized criticality may be viewed as one limit of the fixed-cluster algo-
rithm. @S1063-651X~96!50305-3#

PACS number~s!: 05.50.1q, 75.40.Mg, 75.10.Hk

Recently, a remarkably simple cluster algorithm for gen-
erating equilibrium spin configurations at critical points was
introduced by Machta and co-workers@1#. This development
in acceleration algorithms for unfrustrated spin systems is
exciting because the method can be used to sample the criti-
cal region without knowing the critical temperature, and also
because the method is significantly faster than the celebrated
and closely related Swendsen-Wang~SW! @2# and Wolff @3#
cluster algorithms. The recipe is simple: Start withany con-
figuration of spins, and throw ‘‘bonds’’ with probability one
between nearest-neighbor pairs of parallel~satisfied! spins
anywhere on the lattice until a spanning cluster is formed.
Then flip each cluster of bonded spins with probability 1/2,
and repeat. After very few iterations, a spin configuration
characteristic in every respect to one in equilibrium at the
critical point is produced. This method—which may also be
performed using invasion percolation to identify the
clusters—was thus said to exhibit self-organized criticality.

In this paper, we generalize this ‘‘invaded cluster’’~IC!
@1# algorithm to generate equilibrium spin configurations at
any temperature, not just the critical temperatureTc . This is
achieved using a variation of random bond percolation, in-
stead of invasion percolation@4#, to identify the clusters, and
flipping the clusters with probability 1/2 after a cluster of
length l is formed, rather than when a spanning cluster is

formed @5#. We refer to the generalized algorithm as the
fixed-cluster~FC! algorithm. For the purposes of illustration,
we consider here the FC algorithm as applied to the two-
dimensional Ising model in zero magnetic field.

Because the first paper on this new algorithm has just
recently appeared@1#, we begin by confirming that the pre-
scription of Machtaet al. indeed generates an equilibrated

FIG. 1. Cluster size distribution calculated on lattices equili-
brated with the invaded cluster~IC! and Swendson-Wang~SW!
algorithms. The slope of the line ist52.04.
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lattice at Tc , and is faster than SW. Figure 1 shows the
number of clustersn(s) at Tc containing s sites plotted
double logarithmically vss, and averaged over 1000 inde-
pendent 5003500 square lattices simulated with the IC al-
gorithm. To calculate the equilibrium cluster size distribu-
tion, clusters are identified as nearest-neighbor pairs of
parallel spins connected@6,7# by bonds with probability
pb512e22J/kBT, where J is the coupling strength. The
slope of the line gives the cluster size distribution exponent
t52.04, in very good agreement with the accepted value
t52.07 when finite size effects are considered. Figure 1 also
shows the cluster size distribution averaged over 1000 inde-
pendent 5003500 lattices simulated with the SW algorithm
at Tc ; we see that the distributions obtained using the two
algorithms are indistinguishable. Figure 2 shows the
increase in energyE as the system equilibrates from an
initial configuration of all spins up (E522.0) to thecritical
point (E521.41), calculated for both the IC and SW
algorithms on 10 independent 400034000 lattices; we see
that the SW algorithm requires over 10 times more iterations
than the IC algorithm to reach the equilibrium energy. We
also calculate the equilibrium energy and magnetization
autocorrelation functions^@E(t)2Ē#@E(0)2Ē#&/ var(E)
and ^@ uM (t)u2uM̄ u#@ uM (0)u2uM̄ u#&/ var(M ) for both algo-

rithms atTc , and find as Machtaet al. did that the correla-
tions decay to zero within two iterations for the IC algorithm,
while the SW algorithm requires at least 20 iterations for the
correlations to decay to zero on the same size lattice. Thus
we confirm the success of the algorithm presented by Machta
et al. in generating equilibrium spin configurations at the
critical point in thed52 Ising model.

We generalize the IC algorithm to generate equilibrium
spin configurations atTÞTc by performing the following
procedure: Starting with all spins up~although any initial
configuration will work!, throw bonds between nearest-
neighbor parallel~satisfied! spins anywhere on the lattice
with probability one. When any cluster of bonded spins
reaches a prechosen lengthl ~where length is defined as the
maximum linear extension!, flip each cluster with probability
1/2, and repeat. Figure 3 shows the energyE and the ratio
f of inserted bonds/satisfied pairs after each iteration, aver-
aged over 100 5003500 lattices simulated with the FC algo-
rithm with l 550. After three iterations,E and f reach their
equilibrium valuesE521.078 andf50.546.

To confirm that the configuration is indeed in equilibrium,
and to determine the temperature of the lattice@8#, we calcu-
late T from the energy using Onsager’s formula@9# for
E(T), and then independently equilibrate a new lattice using
the Glauber spin-flip algorithm@10# at that temperature. The
cluster size distributionn(s) for both the FC-equilibrated
lattices with l 550 and 100 and the Glauber-equilibrated
lattices at the corresponding temperaturesT52.5331 and
2.3726 are shown in Fig. 4; we see that at both temperatures
the cluster distributions generated by the two different algo-
rithms are indistinguishable.

Figure 5 shows the mean cluster size^s& vs (T2Tc) plot-
ted double-logarithmically for the 5003500 lattices simu-
lated with the FC algorithm for variousl . Here the mean
cluster size, which scales in the same way as the susceptibil-
ity for T→Tc , is defined aŝ s&5@(ss

2n(s)#/@(ssn(s)#.
We find the exponentg, which describes the divergence of
the mean cluster size as the critical temperature is ap-
proached, to beg51.73, in excellent agreement with the
exact theoretical value ofg51.75.

To elucidate the reason why the FC algorithm works, we
list in Table I the equilibrium values off andE obtained for

FIG. 2. Average energy per spin for IC and SW starting from all
spins up for the first 20 iterations.

FIG. 3. Average energy per spin starting from all spins up for
the first 20 iterations for FC atl 550 and SW atT52.53. Inset:
Fraction of satisfied bonds starting from all spins up for FC at
l 550.

FIG. 4. Cluster size distributionn(s) plotted againsts for FC at
l 550, for simple Glauber atT52.5331 and for FC atl 5100,
Glauber atT52.3726. Both sets of data are generated from 1000
independent 5003500 square lattices.
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each value ofl , the corresponding temperature of the lattice
calculated from the Onsager relation, and the corresponding
bond probabilitypb512e22J/kT used in the SW algorithm.
Recall that in the SW algorithm, bonds are thrown with prob-
ability pb between nearest neighbor pairs of parallel~satis-
fied! spins, and clusters of spins connected by bonds are
flipped with probability 1/2. We see from Table I that for
each choice of fixed cluster length,f5pb . This is why the
FC algorithm works: once the system is in equilibrium, flip-
ping the clusters after a cluster of lengthl is grown is
equivalent to flipping the clusters after a fractionf of bonds
has been thrown, and this is equivalent to the SW prescrip-
tion of flipping the clusters after throwing bonds between
every satisfied pair of spins with probabilitypb5 f . That is,
each iteration of the FC algorithm at fixed cluster lengthl is
essentially equivalent to one iteration of the SW algorithm
with pb(T)5 f (l ) @11#.

However, the FC algorithm guarantees that at each itera-
tion the maximum cluster length present ischaracteristic of
the cluster distribution at the desired state point. For ex-
ample, for l equal to the system sizeL the FC algorithm
guarantees by definition that a spanning cluster is always
present before the clusters are flipped. Since a spanning
cluster is typical of the critical point, and since
f (l 5L)5pb(Tc), the algorithm is equivalent to the SW al-
gorithmwith configurations not containing an incipient infi-
nite cluster eliminated. Thus, at anyT ~or equivalently for

any l ), the FC algorithm is equivalent to an ‘‘optimized’’
SW algorithm—that is, SW with the maximum cluster length
fixed to be representative of the desired cluster distribution.
Consequently, since the SW algorithm generates configura-
tions in the grand canonical ensemble, the FC algorithm gen-
erates only a subset of this ensemble.

This reasoning also explains the relative speed of the
FC algorithm at all temperatures in generating successive
decorrelated equilibrium configurations, as compared to SW
~cf. Fig. 6!. Note that the relative efficiency of the FC algo-
rithm will be greatest close to the critical point, for large
system sizes, and for increasing dimension, since there the
effect of the guaranteed existence of the largest cluster will
be most significant. Figure 7 shows the probabilityP` of an
infinite cluster vs the bond fractionf . As the lattice size
approaches infinity,P` approaches a step function at
f5pc . In the SW algorithm atTc , bonds are thrown with
probability pc . Due to fluctuations, sometimes a more-than-
spanning cluster will be present, sometimes no spanning
cluster will be present, and sometimes an incipient infinite
cluster will be present. With the FC algorithm atl 5L,
however—and consequently with the IC algorithm—the in-
cipient infinite cluster is always present.

The FC algorithm is also faster than SW inreachingequi-
librium at any temperature, starting from any initial starting
configuration. The reason is that before the system is in equi-
librium, f is not equal to the SW bond probability at the
desired temperature, but rather it is equal topb at adifferent

FIG. 5. Mean cluster sizês& plotted againstuT2Tcu for FC.
The slope of the line isg51.73.

FIG. 6. Equilibrium energy and magnetization autocorrelation
functions for FC atl 550 and SW atT52.5331.

FIG. 7. Schematic plot of the probabilityP` of finding a span-
ning cluster vs bond fractionf for a finite and an infinite lattice.

TABLE I. Equilibrium values off andE for different values of
l , for lattice sizeL5500.

l f (l ) E(l ) T pb(T)

50 0.547 -1.0785 2.5331 0.546
60 0.555 -1.1267 2.4767 0.554
70 0.560 -1.1651 2.4366 0.560
80 0.565 -1.1935 2.4094 0.564
90 0.568 -1.2173 2.3883 0.567
100 0.570 -1.2362 2.3726 0.570
125 0.575 -1.2745 2.3433 0.575
150 0.577 -1.3010 2.3252 0.577
200 0.580 -1.3339 2.3050 0.580
500 0.586 -1.4054 2.2619 0.586
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temperature. Table II showsf after each iteration of the FC
algorithm for l equal to the system size, starting from an
initial configuration of all spins up. At the first iteration,
f (t51)50.499 for this run. Had we used the SW algorithm,
a fraction f (t51)5pb(Tc)50.586 of bonds would have
been thrown at the first iteration. Thus we can consider the
first iteration of the FC algorithm as an iteration using SW
with pb50.499, or equivalently with an effective tempera-
ture Tef f52.89 as calculated frompb512e22J/kBT, which
is greater thanTc . At the second iteration of the FC algo-
rithm, f (t52)50.569, which corresponds toTef f52.37.
Thus each successive iteration sets the temperature to be
closer to but slightly higher thanTc , thereby heating the
system faster. At each iteration,f increases, and at the sixth
iteration for this run,f exceedspb , thus cooling the system
to a temperature slightly belowTc . At the next iteration, a
fraction f,pb(Tc) is thrown, ‘‘warming’’ the system back
to Tc . This ‘‘negative feedback’’ mechanism described also
by Machtaet al.—combined with fixing the maximum cluster
length to be representative of the desired cluster
distribution—is responsible for the speed of the FC and IC
algorithms. The same argument applies to finitel , i.e., T
ÞTc , simulations~cf. Table III!. Thus we see that the FC
algorithm approaches equilibrium in a manner similar to that
achieved through an optimized simulated annealing process,
whereas SW approaches equilibrium in a manner similar to
that achieved via quenching.

The FC algorithm uses a variation of random bond perco-
lation to identify clusters of bonded spins. For finite lattices,
a spanning cluster generated using either concepts of random
bond percolation or invasion percolation will be statistically
identical. However, random bond percolation is more natu-
rally generalized to create maximum cluster sizes less than
spanning, and thus to bond fractions away frompc , and
consequently the FC algorithm can be straightforwardly gen-
eralized to temperatures away fromTc . Thus while the IC
algorithm was originally based on invasion percolation and
introduced to sample the critical region, we have shown that
the algorithm can be generalized to produce equilibrium spin
configurations atany temperature—and thus sample regions
of phase space away from the critical region—simply by
choosing the maximum cluster length to be a finite value
l . Thus, tuningl allows one to tune the final temperature of
the lattice. From this point of view, the connection between
the IC algorithm and self-organized criticality can be viewed
as simply thel →` limit of the FC algorithm. From the
point of view of invasion percolation, however, the associa-
tion with self-organized criticality is a natural one.
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TABLE II. f , E, and M for the first 10 iterations of one
400034000 lattice withl 5L ~corresponding toT5Tc), starting
from all spins up. Also listed are the effective temperature after
each iteration, and the ratio ofTef f to the target temperature.

t f (t) E(t) M (t) Tef f Te f f /Tc

0 0.0000 -2.0000 1.0000 0.00 0.00
1 0.4995 -1.5148 -0.0717 2.89 1.27
2 0.5693 -1.4432 0.1027 2.37 1.04
3 0.5825 -1.4321 -0.0278 2.29 1.01
4 0.5752 -1.3986 -0.1261 2.34 1.03
5 0.5849 -1.4047 -0.1144 2.27 1.00
6 0.5932 -1.4235 0.0363 2.22 0.98
7 0.5782 -1.4031 -0.0108 2.32 1.02
8 0.5888 -1.4168 -0.0604 2.25 0.99
9 0.5835 -1.4178 -0.0502 2.28 1.00
10 0.5806 -1.4043 -0.0371 2.30 1.01

TABLE III. f , E, andM for the first 10 iterations of one 500
3500 lattice with l 550 ~corresponding toT52.5331), starting
from all spins up. Also listed are the effective temperature after
each iteration, and the ratio ofTef f to the target temperature.

t f (t) E(t) M (t) Tef f Te f f /T

0 0.0000 -2.0000 1.0000 0.000 0.000
1 0.4191 -1.1496 -0.1139 3.682 1.454
2 0.5187 -1.0545 0.0114 2.735 1.079
3 0.5470 -1.0673 -0.0023 2.526 0.997
4 0.5465 -1.0709 -0.0010 2.529 0.998
5 0.5497 -1.0806 0.0027 2.507 0.990
6 0.5473 -1.0808 0.0000 2.524 0.996
7 0.5443 -1.0735 -0.0014 2.545 1.005
8 0.5508 -1.0849 -0.0009 2.499 0.986
9 0.5428 -1.0723 0.0003 2.555 1.008
10 0.5435 -1.0664 0.0002 2.550 1.007
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